Using commercially available personal glucose meters for portable quantification of DNA.
نویسندگان
چکیده
DNA detection is commonly used in molecular biology, pathogen analysis, genetic disorder diagnosis, and forensic tests. While traditional methods for DNA detection such as polymerase chain reaction (PCR) and DNA microarrays have been well developed, they require sophisticated equipment and operations, and thus it is still challenging to develop a portable and quantitative DNA detection method for the public use at home or in the field. Although many other techniques and devices have been reported to make the DNA detection simple and portable, very few of them are currently accessible to the public for quantitative DNA detection because of either the requirement of laboratory-based instrument or lack of quantitative detection. Herein we report application of personal glucose meters (PGMs), which are widely available, low cost, and simple to use, for quantitative detection of DNA, including a hepatitis B virus DNA fragment. The quantification is based on target-dependent binding of cDNA-invertase conjugate with the analyte DNA, thereby transforming the concentration of DNA in the sample into glucose through invertase-catalyzed hydrolysis of sucrose. Instead of amplifying DNA strands through PCR, which is vulnerable to contaminations commonly encountered for home and field usage, we demonstrate here signal amplifications based on enzymatic turnovers, making it possible to detect 40 pM DNA using PGM that can detect glucose only at the mM level. The method also shows excellent selectivity toward single nucleotide mismatches.
منابع مشابه
An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter.
We report herein a general methodology for metal ion detection using low-cost, simple, and widely accessible personal glucose meters through an invasive DNA approach.
متن کاملUsing personal glucose meters and functional DNA sensors to quantify a variety of analytical targets.
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter-used worldwide by diabetes suffer...
متن کاملDose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step.
We report a discovery that personal glucose meters (PGMs) can give a dose-dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one-step homogeneous assays of many non-glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and wi...
متن کاملPortable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters.
Developing portable and low-cost methods for quantitative detection of large protein biomarkers and small molecular toxins can play a significant role in controlling and preventing diseases or toxins outbreaks. Despite years of research, most current methods still require laboratory-based or customized devices that are not widely available to the general public for quantitative analysis. We hav...
متن کاملComparative Accuracy of 17 Point-of-Care Glucose Meters.
BACKGROUND The accuracy of point-of-care blood glucose (BG) meters is important for the detection of dysglycemia, calculation of insulin doses, and the calibration of continuous glucose monitors. The objective of this study was to compare the accuracy of commercially available glucose meters in a challenging laboratory study using samples with a wide range of reference BG and hemoglobin values....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2012